



# NALSE & NALSRE

Belt Drive Roof and Plantroom Single Fans



# Installation and Maintenance

#### Introduction

The Nuaire NALSF and NALSRF Belt Drive Single Fan range consists of the following units:

NALSF/NALSRF Plantroom/Roof in line mounted unit.
NALSRF Plantroom/Roof bottom inlet unit.
NALSRF Plantroom/Roof bottom/end inlet unit.
(Larger sizes).

Units are rectangular in section and the casing is manufactured from heavy gauge 'Aluzinc' aluminium-zinc coated mild steel.

A full size internally lined access panel is fitted to the top face and is fully detachable for inspection purposes.

The motor plate and frames are supported on the base by resilient mountings allowing the fan unit to be operated without the need for separate anti vibration fan case mountings.

The units incorporate an independent motor with high efficiency, forward curved centrifugal impeller running in a metal scroll. Taperlocked pulleys and wedge drive belts are employed. The fan discharges into a common outlet chamber through a shutter system that prevents 'blowback through the standby fan. The motor is manufactured to BS5000 and is suitable for three phase supply.

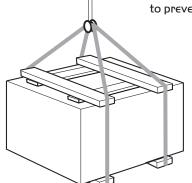
Airflow and failure monitors are standard for sizes 9 to 15. The motor has Class F insulation and is suitable for operation in ambient temperatures up to 40°C.

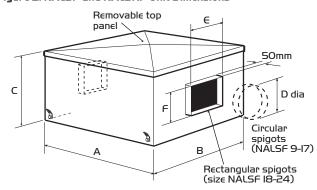
# I.O Handling

Always handle the units carefully to avoid damage and distortion. Eyebolts are provided on some units for lifting. If mechanical aids are used to lift the unit, spreaders should

be employed and positioned so as to prevent the slings, webbing etc.

casing.





Figure I. Lifting unit with slings via spreaders.

Correctly position slings to avoid twisting of the unit case and observe the centre of gravity before the final lift is made. Note: the weight of the unit from the rating plate.

making contact with the

# 2.0 Dimensions (mm)

Figure 2. NALSF and NALSRF Unit Dimensions



| Unit        |             | Α    | В    | C    | D dia | €    | F   |
|-------------|-------------|------|------|------|-------|------|-----|
| NALSF9-IO,  | NALSRF9-IO  | 974  | 974  | 622  | 400   | -    | -   |
| NALSFII-I2, | NALSRFII-I2 | 1233 | 1233 | 701  | 500   | -    | -   |
| NALSFI3-I7, | NALSRFI3-I7 | 1430 | 1190 | 796  | 630   | -    | -   |
| NALSFI8-24, | NALSRFI8-24 | 2030 | 1466 | 1183 | -     | 1200 | 700 |

Figure 3. NALSRF Bottom Inlet Unit Dimensions

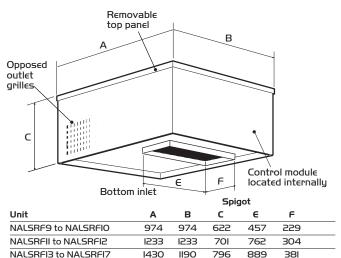
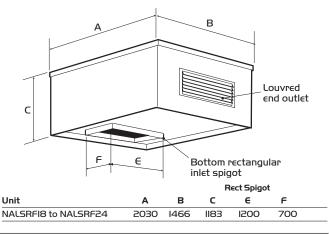




Figure 4. NALSRF Larger Bottom/End Inlet Unit Dimensions



# 3.0 Installation

IMPORTANT

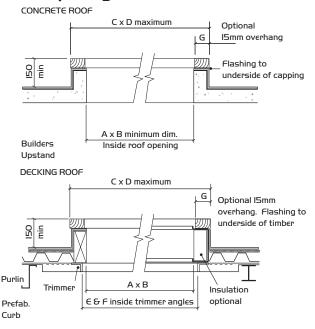
The installation must be carried out by competent personnel in accordance with the appropriate authority and conforming to all statutory and governing regulations.

Units must not be installed at an angle over 5° from the horizontal (to ensure the backdraught shutters operate satisfactorily). Units must be installed with the access panel on top, never up-side-down.

#### IMPORTANT

Units should always be positioned with sufficient space to allow removal of the access covers and subsequent removal of fan and motor assemblies etc.

Ductwork connections must be airtight to prevent loss of performance.


The method of mounting used is the total responsibility of the installer. The lower edge of the casing has an internal skirt allowing the unit to be located on an upstand or prefabricated curb if desired. The units must be securely screw fixed to the upstand/curb to prevent vibration and/or wind damage.

It is the installers responsibility to drill the case to provide access for the electrical cables. Care should be taken not to damage internal components and the cable entry must be properly sealed. NOTE: on bottom inlet units the electrical cabling may be routed up through the bottom inlet spigot.

# **Upstand Details**

Details of roof opening dimensions etc required and basic construction of a builders upstand etc are shown below for typical concrete and decking roof installations

## Roof Opening Dimensions Figure 5.



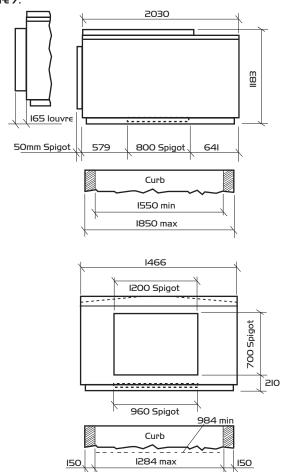
| Unit Cod∈   | Prefab Code | Α    | В   | C    | D    | €    | F    | G   |
|-------------|-------------|------|-----|------|------|------|------|-----|
| NALSF 9-10  | NALPFC 4B   | 767  | 767 | 947  | 947  | 837  | 837  | 75  |
| NALSF II-I2 | NALPFC 5B   | 973  | 973 | 1203 | 1203 | 1064 | 1064 | 100 |
| NALSF 13-17 | NALPFC 6BS  | 1174 | 936 | 1404 | 1166 | 1265 | 1027 | 100 |

Note: Prefabricated curbs can be used to support internal or external units.

# Prefabricated Curb CODES: NALPFC (typical) Manufactured in aluminium alloy these curbs will reduce design work and guarantee correct

Note: Upper faces of curb are fitted with robust sealing strip.

Figure 6.


#### Prefabricated curb dimensions

unit mounting when on site.

| Unit        | Prefab     |      |      |     |  |  |
|-------------|------------|------|------|-----|--|--|
| Cod∈        | Curb Cod∈  | Α    | В    | C   |  |  |
| NALSF 9-IO  | NALPFC 4B  | 917  | 917  | 250 |  |  |
| NALSF II-I2 | NALPFC 5B  | II73 | II73 | 250 |  |  |
| NALSF 13-17 | NALPFC 6BS | 1374 | II36 | 250 |  |  |

# Typical Roof Upstand for NALSFI8-24

Figure 7.



# 4.0 Electrical Details

#### IMPORTANT

Isolation - Before commencing work make sure that the unit, and any control are electrically isolated from the mains supply.

#### Run currents etc.

| 400V 3 Phase 50Hz |       |             |        |        |        |  |  |
|-------------------|-------|-------------|--------|--------|--------|--|--|
| Unit Cod∈         | Speed | Speed Power |        | sc     | Weight |  |  |
|                   | rpm   | (kW)        | (amps) | (amps) | kg     |  |  |
| NALSF/SRF 9       | 1225  | 0.75        | 2.1    | 9.5    | 84.4   |  |  |
| NALSF/SRF IO      | 1400  | 1.1         | 2.9    | 13.0   | 90.4   |  |  |
| NALSF/SRF II      | 1085  | 1.5         | 3.7    | 8.5    | 125    |  |  |
| NALSF/SRF I2      | 1225  | 2.2         | 5.4    | 27.0   | I34    |  |  |
| NALSF/SRF I3      | 1040  | 2.2         | 5.4    | 27.0   | 168.7  |  |  |
| NALSF/SRF 14      | 1040  | 4.0         | 10.0   | 60.0   | 193.6  |  |  |
| NALSF/SRF I5      | 1260  | 3.0         | 6.9    | 38.0   | 174.6  |  |  |
| NALSF/SRF 16      | 1260  | 5.5         | 12.0   | 75.0   | 231.6  |  |  |
| NALSF/SRF I7      | 1440  | 5.5         | 12.0   | 75.0   | 231.6  |  |  |
| NALSF/SRF 18      | 700   | 5.5         | 12.0   | 75.0   | 700    |  |  |
| NALSF/SRF 19      | 800   | 4.0         | 10.0   | 60.0   | 700    |  |  |
| NALSF/SRF 20      | 800   | II.O        | 23.0   | 154.0  | 750    |  |  |
| NALSF/SRF 2I      | 1000  | 5.5         | 12.0   | 75.0   | 750    |  |  |
| NALSF/SRF 22      | 1000  | II.O        | 23.0   | 154.0  | 750    |  |  |
| NALSF/SRF 23      | IIOO  | II.O        | 23.0   | 154.0  | 750    |  |  |
| NALSF/SRF 24      | 1200  | II.O        | 23.0   | 154.0  | 750    |  |  |

#### NOTES:

Because the run and start currents depend upon the duty and associated ductwork of an individual unit, the values quoted in the table are nominal.

Run currents will be exceeded if the unit is operated with its cover removed. The unit must NOT run for more than 2 minutes in this condition.

# NALSF/NALSRFI6-24 Inclusive

These fan units are supplied without any controls fitted. The electrical power is connected directly to the motor. Note that the motors are 5.5kW or higher and STAR/DELTA starting or a Soft Starter should be used in the motor control panel (by others).

# **NALSRF - All Models**

Supplied without controls, electrical power is connected direct to the motor. Follow the instructions in the terminal box lid.

## **IMPORTANT**

Motors of 4kW and above connect in DELTA or to a STAR/ DELTA STARTER, motors below 4kW connect in STAR.

## **IMPORTANT**

Isolation - Before commencing work make sure that the unit, and any control are electrically isolated from the mains supply.

#### 5.0 Maintenance - Fan unit

#### Maintenance Intervals

The first maintenance should be carried out three months after commissioning and thereafter at twelve monthly intervals. These intervals may need to be shortened if the unit is operating in adverse environmental conditions, or in heavily polluted air. Access to the unit internals is gained by removing the top cover(s).

#### Motor

Brush away any dust or dirt from the motor housing and ensure that the motor vents are unblocked.

#### Bearings

Lubrication is unnecessary as the motor is fitted with sealed for life bearings.

#### Impellers

Remove any dust and check that the impeller is securely fixed to the motor shaft. Take care not to disturb any balance weights fitted. Check sealed for life bearings for excessive wear.

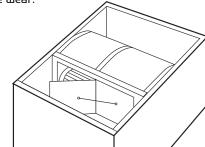



Figure 8. Shutter detail.

#### Shutter Assembly

Remove any dust and check that the shutters operate freely and that they seal the appropriate fan outlet effectively.

#### Anti Vibration Motor Plate Mountings

The motor plate is supported on ten individual resilient mountings. Check that all the mountings are secure and in good condition. (See figure 9).

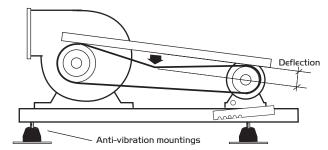



Figure 9. Adjusting the Drive Belts (smaller units).

#### Adjusting Drive Belt Tension (smaller units).

To check the correct tension of a drive belt, apply a force at right angles to the centre of the belt span sufficient to deflect the belt I6mm for every metre of span length (see figure 9). The force required to deflect the 'V' belt should be from 0.5kg to 0.8kg.

#### Changing a Drive Belt

To replace a belt, remove the two bolts from the motor mounting furthest from the fan and slacken the remaining two bolts. Lift the motor plate and remove the belt. Replacing the belt is the reverse of this procedure.

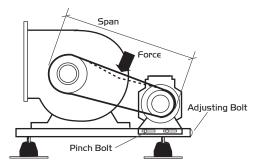



Figure IO. Adjusting the Drive Belts (larger units).

#### Adjusting Drive Belt Tension (larger units)

All belt drive units incorporate belt tensioning devices. To adjust the belt tension, slacken the pinch bolt on the sides of the motor plate. Turn the adjusting bolt clockwise to tighten the belt and counter clockwise to loosen it. The drive should be tensioned until a slight bow appears in the slack side of the 'V' belt when running under load.

To check for correct tension, proceed as follows.

- I. Measure the span length (See figure IO).
- 2. At the centre of the span, apply a force at right angles to the belt sufficient to deflect one belt IGmm for every metre of span length (see figure IO). The force required to deflect the 'V' belt should be from 0.5kg to 0.8kg.
- 3. Tighten the pinch bolts.

#### General Cleaning and Inspection

Clean and inspect the exterior of the fan unit and associated controls etc. Remove the access panel from the fan unit. Inspect and, if necessary, clean the fan and motor assembly and the interior of the case. If the unit is heavily soiled it may be more convenient to remove the fan/motor assembly. If any controls and or remote indicators are fitted, remove the covers and carefully clean out the interiors as necessary. Check for damage. Check security of components. Refit the access covers.

#### General

- I. Check that all fixings are tight.
- 2. Check sealing strips around the fan outlets are tight up against the bulkhead.
- 3. Check that duct connections are not leaking.

# 6.0 Replacement of Parts

Drive belts are the only servicable items on these fan units. With time and fair wear and tear it may be necessary to replace fan assemblies or motor - consult the fan rating plate detail when ordering.

#### Note: Isolate the Electrical Supply

Remove the top access panel. Disconnect the wiring to the motor assembly. Remove the old unit. Replace the fan/motor assembly. Re-connect the supply to the motor. Check for correct rotation and operation and replace the top access panel.

# Spare Parts

When ordering spares please quote the serial number of the unit. This number will be found on the identification plate attached to the unit mounting frame.

Please give a full description of the part required.

# 7.0 Warranty

The unit has a one year warranty. The warranty starts from the date of delivery and covers faulty materials or workmanship and includes parts and labour. The labour element is subject to full, free and safe access to the equipment as recommended by the CDM regulations.

This warranty is void if the equipment is modified without authorisation, is incorrectly applied, misused, disassembled, or not installed, commissioned and maintained in accordance with the details contained in this manual and general good practice.

The product warranty applies to the UK mainland and in accordance with Clause I4 of our Conditions of Sale.

Customers purchasing from outside of the UK should contact Nuaire International Sales office for further details.

# 8.0 After Sales Enquiries

For technical assistance or further product information, including spare parts and replacement components, please contact the After Sales Department.

Telephone 02920 858 400

# DECLARATION OF INCORPORATION AND INFORMATION FOR SAFE INSTALLATION, OPERATION AND MAINTENANCE

We declare that the machinery named below is intended to be assembled with other components to constitute a system of machinery. The machinery shall not be put into service until the system has been declared to be in conformity with the provisions of the EC Machinery Directive.

Designation of machinery: BELT DRIVE SINGLE FAN

Machinery Types: NALSF, NALSRF

Relevant EC Council Directives: 2006/42/EC (Machinery Directive)

Applied Harmonised Standards: BS EN ISO I2I00-I, BS EN ISO I2I00-2, EN294. EN60204-I. BS EN ISO 900I

Applied National Standards: BS848 Parts One. Two and Five

Note: All standards used were current and valid at the date of signature.

Signature of manufacture representatives:

Name: Position: Date:

I) C. Biggs Technical Director 20. 07. 07

2) A. Jones Manufacturing Director 20. 07. 07

# INFORMATION FOR SAFE INSTALLATION, OPERATION AND MAINTENANCE OF NUAIRE VENTILATION EQUIPMENT

To comply with EC Council Directives 2006/42/EC Machinery Directive and 2014/30/EU (EMC).

To be read in conjunction with the relevant Product Documentation (see 2.1)

I.O GENERAL

I.I The equipment referred to in this **Declaration of Incorporation** is supplied by Nuaire to be assembled into a ventilation system which may or may not include additional components.

The entire system must be considered for safety purposes and it is the responsibility of the installer to ensure that all of the equipment is installed in compliance with the manufacturers recommendations and with due regard to current legislation and codes of practice.

#### 2.0 INFORMATION SUPPLIED WITH THE EQUIPMENT

- 2.I Each item of equipment is supplied with a set of documentation which provides the information required for the safe installation and maintenance of the equipment. This may be in the form of a Data sheet and/or Installation and Maintenance instruction.
- 2.2 Each unit has a rating plate attached to its outer casing. The rating plate provides essential data relating to the equipment such as serial number, unit code and electrical data. Any further data that may be required will be found in the documentation. If any item is unclear or more information is required, contact Nuaire.
- 2.3 Where warning labels or notices are attached to the unit the instructions given must be adhered to.

#### 3.0 TRANSPORTATION, HANDLING AND STORAGE

- 3.1 Care must be taken at all times to prevent damage to the equipment. Note that shock to the unit may result in the balance of the impeller being affected.
- 3.2 When handling the equipment, care should be taken with corners and edges and that the weight distribution within the unit is considered. Lifting gear such as slings or ropes must be arranged so as not to bear on the casing.
- 3.3 Equipment stored on site prior to installation should be protected from the weather and steps taken to prevent ingress of contaminants.

#### 4.0 OPERATIONAL LIMITS

- 4.1 It is important that the specified operational limits for the equipment are adhered to e.g. operational air temperature, air borne contaminants and unit orientation.
- 4.2 Where installation accessories are supplied with the specified equipment eg. wall mounting brackets. They are to be used to support the equipment only. Other system components must have separate provision for support.
- 4.3 Flanges and connection spigots are provided for the purpose of joining to duct work systems. They must not be used to support the ductwork.

#### 5.0 INSTALLATION REQUIREMENTS

In addition to the particular requirements given for the individual product, the following general requirements should be noted.

- 5.I Where access to any part of equipment which moves, or can become electrically live are not prevented by the equipment panels or by fixed installation detail (eg ducting), then guarding to the appropriate standard must be fitted.
- 5.2 The electrical installation of the equipment must comply with the requirements of the relevant local electrical safety regulations.
- 5.3 For EMC all control and sensor cables should not be placed within 50mm or on the same metal cable tray as 230V switched live, lighting or power cables and any cables not intended for use with this product.

#### 6.0 COMMISSIONING REQUIREMENTS

6.I General pre-commissioning checks relevant to safe operation consist of the following:

Ensure that no foreign bodies are present within the fan or casing.

Check electrical safety. e.g. Insulation and earthing.

Check guarding of system.

Check operation of Isolators/Controls

Check fastenings for security.

6.2 Other commissioning requirements are given in the relevant product documentation.

#### 7.0 OPERATIONAL REQUIREMENTS

- 7.1 Equipment access panels must be in place at all times during operation of the unit, and must be secured with the original fastenings.
- 7.2 If failure of the equipment occurs or is suspected then it should be taken out of service until a competent person can effect repair or examination. (Note that certain ranges of equipment are designed to detect and compensate for fan failure).

#### 8.0 MAINTENANCE REQUIREMENTS

- 8.I Specific maintenance requirements are given in the relevant product documentation.
- 8.2 It is important that the correct tools are used for the various tasks required.
- 8.3 If the access panels are to be removed for any reason the electrical supply to the unit must be isolated.
- 8.4 A minium period of two minutes should be allowed after electrical disconnection before access panels are removed. This will allow the impeller to come to rest. NB: Care should still be taken however since airflow generated at some other point in the system can cause the impeller to "windmill" even when power is not present.
- 8.5 Care should be taken when removing and storing access panels in windy conditions.

Technical or commercial considerations may, from time to time, make it necessary to alter the design, performance and dimensions of equipment and the right is reserved to make such changes without prior notice.